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in – , consequently, gives rise to a maximum point on
each ambipolar branch of the – curve in Fig. 8(a).

Fig. 8(b) plots the versus curve where
has been calculated from (25) with given by (20). A “double
peak” feature is observed in the versus plot sim-
ilar to that in the – curve. Due to the symmetry for
electron versus hole transport in our model, the observed fre-
quency response for the electron branch (right) versus the hole
branch (left) is also symmetric. Fig. 8(c) plots the
versus curves at the corresponding biases. Interest-
ingly, is only obtained for the electron branch,
whereas for the hole branch. This is because of
the quasi-saturation of the output characteristics in Fig. 7(a) for
electron transport, which reduces in a certain bias range.
On the other hand, for the hole transport branch in Fig. 7(b),
the channel conductance is much larger, thus
is observed. Therefore, it is important to note that even though

can be obtained in ballistic GFETs, the biasing
voltages have to be carefully chosen in order to achieve such
operation.

As in the case of AFETs, we have obtained an analytical ex-
pression for the value in GFETs with the aid of (20) and
(23)

(28)

The above expression is a fundamental limit for the intrinsic
of GFETs even with perfectly injecting source/drain con-

tacts. Due to the zero bandgap of 2-D graphene, a unique fea-
ture of (28), unlike in conventional MOSFETs or AFETs with all
s-CNT channels, is that cannot be generally ignored
even at large values. In other words, carrier back-injection
into the channel from the drain is always present because of the
zero bandgap, and results in a higher gate-to-drain capacitance

in GFETs. From (28), the maximum
in GFETs is obtained with appropriate biasing conditions.

IV. RF PERFORMANCE COMPARISON

A. RF Performance Without Parasitics

Section III described the individual device operation and
explored the dependence of certain performance metrics that
are important for RF applications for both AFETs and GFETs.
Here we compare their RF performance on a common basis.
Since the operational characteristics for AFETs versus GFETs
are markedly different (e.g., Fig. 5 versus Fig. 7) in Fig. 9, we
use the current drive as the basis for comparison. Since we use
the same drain bias in Fig. 9, the -axis also corresponds to the
power dissipation in each device. Fig. 9(a) and (b) compares
the versus and versus , respectively,
for the two devices at V. In constructing Fig. 9(a),
in the case of AFETs for example, we use Figs. 5(b) and 6(b)
to correlate the value with . A similar procedure
is used in Fig. 9(b). In the case of GFETs, we consider only
the electron branch [the right branch in Fig. 7(c)], which gives

in Fig. 8(c).

Fig. 9. (a) � �� versus � and (b) � �� versus � characteristics for
the AFET and GFET at � � ���V. As specified in the legend, several purity
levels have been explored in the case of AFETs.

In Fig. 9(a), we observe that, at this ultimate performance
limit, the AFET features a % higher peak intrinsic com-
pared to the GFET even in the presence of m-CNTs in the AFET
channel. There are two main reasons for the larger in AFETs,
which are: 1) higher average velocity in CNTs since all the car-
riers are directed in the transport direction as opposed to the
2-D distribution in graphene and 2) negligible intrinsic drain
capacitance in s-CNTs due to the elimination of drain back-
injection by the channel bandgap region, which is absent in
graphene. In Fig. 9(b), AFETs also exhibit a higher
value mainly due to the smaller afforded by the superior
saturation behavior compared to GFETs. The larger
value in AFETs, however, significantly degrades at lower pu-
rity levels. In Fig. 9, it is also observed that the higher values
for and in AFETs are obtained at a smaller biasing
current (i.e., power dissipation) compared to the GFET. This is
again because of the higher current conduction in the GFET due
to its lack of a well-defined bandgap region.

B. Impact of External Parasitics

Thus far we have concentrated only on the intrinsic device
operation. In this section, we explore the impact of external
parasitics on the RF performance metrics. Fig. 10(a) shows a
geometrical representation of the additional external parasitic
elements influencing the intrinsic device operation. Fig. 10(b)
depicts the small-signal model assumed here in order to ex-
plore the impact of the parasitics. We introduce additional
source/drain series resistances , and the gate resistance
(as a lumped element) . The extra parasitic capacitances be-
tween the internal and the external terminals of the gate and the
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Fig. 10. (a) Geometrical representation and (b) the small-signal circuit model
used to explore the impact of additional external parasitics on the RF perfor-
mance metrics of AFETs and GFETs.

source/drain electrodes are given by and , re-
spectively. In Fig. 10(b), and the gate-to-source/drain

capacitances are calculated from the intrinsic
device model in Section II.

Fig. 11 compares the maximum available gain of
the AFET and GFET in the presence of additional parasitics.
From the plot, we obtain the power-gain cutoff frequency

, where dB. In Fig. 11(a) and (b), the intrinsic
small-signal parameters have been obtained at the maximum
biasing point of Figs. 6(b) and 8(b), respectively, with an in-
ternal drain bias of 0.3 V. Note that the internal drain bias could
correspond to a much larger external drain bias in the presence
of and because of the large drive currents in AFETs
and GFETs. We also assume a device width m and
a channel length nm for both the devices. Fig. 11(a)
plots of the AFET with a purity of 95% considered here
in order to capture the impact of m-CNTs as well. In Fig. 11(a),
we observe that the AFET can deliver THz for all
the parasitic conditions we have considered (as indicated in the
legend). Table I further summarizes the impact of the external
parasitics on the and metrics of the AFET. Note that
the worst case parasitic values assumed in the right most column
of Table I results in m, which cor-
responds to, on average, 20 k per tube total extrinsic series
resistance (the quantum resistance of 6.5 k per tube will be
in addition to this). In view of the experimentally demonstrated
contact resistance values in s-CNTs ( 10 k per tube) [58], our
worst case assumption is much severe. Even then, both and

values about 1 THz or above have been consistently ob-
served in Table I for AFETs. In the case of the GFET,
above 1 THz has been obtained in Fig. 11(b) when the external
parasitics are minimal. In the GFET, however, we observe the
parasitics to have a stronger impact in degrading the RF perfor-
mance metrics compared to that of the AFET (see also Table I

Fig. 11. Maximum available gain �� � plot: (a) for the AFET with 95%
purity and (b) for the GFET. In (a) and (b), the device width and the channel
length are � � �� �m and � � �� nm, respectively, and the assumed ex-
ternal parasitic values are as indicated in the legend [see Fig. 10(b)]. The AFET
and GFET are biased at the maximum � point in Figs. 6(b) and 8(b), respec-
tively, with internal � � ��� V.

versus Table II). Nevertheless, we observe GHz and
GHz for the GFET under all parasitic values con-

sidered here.

V. DISCUSSION

Tables I and II indicate and values above 1 THz
for both AFETs and GFETs under minimal parasitic conditions.
In the case of AFETs, the superior performance is observed
to be robust even in the presence of realistic parasitics. Such
high performance for AFETs and GFETs shows great potential
for carbon RF electronics that could surpass the performance
of conventional semiconductors. Even though above 1
THz has been demonstrated in InGaAs-based high electron-mo-
bility transistors (HEMTs) [59], [60] and GHz has
been obtained in SiGe heterojunction bipolar transistors (HBTs)
[61], empirical observations indicate that the high-frequency
performance in Si and III–V transistors to be limited to

THz [1], [2]. Therefore, carbon electronics have the potential
to overcome the 1-THz barrier in RF performance, while also
becoming a low-cost alternative for RF applications.

On the other hand, even though we explored the impact of
several important device nonidealities in this study, there are
other challenges that could affect the manufacturability and the
technological feasibility of these device structures. For example,
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TABLE I
SIMULATED � AND � FOR THE AFET WITH 95% PURITY, � � �� �m, � � �� nm, AND INTRINSIC � � ��� V

TABLE II
SIMULATED � AND � FOR THE GFET WITH � � �� �m, � � �� nm, AND AN INTRINSIC � � ��� V

while there has been significant progress toward large-scale syn-
thesis of graphene for device fabrication [9], [62], the ability for
large-scale fabrication of AFETs with higher purity levels is still
challenging [37]. From the RF performance point of view, the
fundamental differences in carrier transport (1-D versus 2-D) in
AFETs versus GFETs could have additional implications on the
RF operation. For example, the impact of impurity charges can
have a stronger influence on 1-D channels compared to the 2-D
limit for GFETs. Such variability could introduce noise con-
cerns, as well as stability issues. Furthermore, we observe that
both AFETs and GFETs require large biasing currents for the
optimal performance, resulting in significant power dissipation
in devices. Therefore, improving the thermal stability of these
devices, as well as minimizing the electrothermal crosstalk in
AFETs will be important in order to reach their ultimate perfor-
mance potential.

VI. CONCLUSION

Here we presented a detailed study on the ultimate perfor-
mance potential of carbon RF electronics based on AFETs
and GFETs. We have shown that the diameter variation and
the presence of metallic tubes do not significantly impact the
AFET operation. Furthermore, AFETs can deliver a superior
performance at a lower biasing current and power dissipation
compared to GFETs because of the presence of a bandgap
and higher average carrier velocity in the CNTs of the AFET
channel. Nevertheless, both AFETs and GFETs can support
intrinsic device operation above 1 THz. Therefore, achieving
such large frequency limits will ultimately depend on the
technological progress for each of these device options.
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